If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9x^2+30x-50=0
a = 4.9; b = 30; c = -50;
Δ = b2-4ac
Δ = 302-4·4.9·(-50)
Δ = 1880
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1880}=\sqrt{4*470}=\sqrt{4}*\sqrt{470}=2\sqrt{470}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-2\sqrt{470}}{2*4.9}=\frac{-30-2\sqrt{470}}{9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+2\sqrt{470}}{2*4.9}=\frac{-30+2\sqrt{470}}{9.8} $
| 4.9x^2+30x+50=0 | | 17=p/12 | | x*13+21=x*4+255 | | (x-2)+2x-4=9 | | 30x+-15+25x=180 | | x2+18x+5=0 | | -5=v-5/6 | | 25=b+2 | | -9x+11=15-8(x-3) | | 6=c+9 | | 17=t+12 | | e+10=21 | | 2.19c+355=10.12 | | 4v+16=16 | | (2n/3)/(3n/2)=1/2 | | 2=m/6 | | -6x-3=x+12 | | -6-2r-7=17+r | | 5/7u=25 | | 5u-20=-5u | | 10x-44=0 | | 2x11=4x3 | | 4(x-9)=41 | | -3(p-17)+-5=-2 | | -3(j-4)=-9 | | 3x-30=-15+x+12 | | (x^2-2x-4)(x^2-3x-5)=x | | -2(p+-2)=-2 | | x/200x=4*5 | | 1/4(x-6)=-3 | | 3x+4-x=292x+3) | | 3/5x-1=-1/2x-1/2 |